Real Health Talk ©
With Craig Stellpflug NDC, Health Coach, Neuro Development Consultant

"It's your health we are talking about!"
< Home Page

           Eye Development Milestones


How the child's eyes develop

Introduction to brain development milestones

In order to first understand what goes wrong in neuro development we need to have a working understanding of
normal development. We will begin at prenatal/birth milestones and progress through completed development.

As you have discovered in section 1 of this book there are two basic functions in the brain; receptive (input) and
expressive (output). For section 2 of this book we are limiting our discussion to three main receptive functions;
vision, hearing and tactile (touch) functions and also we are discussing the three corresponding expressive functions
of mobility, language and manual functions.

The receptive and expressive functions develop in predictable order and times in child development. An aberration
in development at any level of one function will ultimately affect any subsequent developmental milestones above the
aberration.  Globally, this aberration in one developmental function also affects collateral functions. For example, a
problem in visual development will ultimately affect language and mobility development. Challenges in auditory
function affect language and mobility and so on.

This section is not designed to give you the exact week, month or year of age that a milestone is reached in normal
development but rather to acquaint you with the developmental order and interplay of the milestones. If you are
caring for a child who has not developed an avenue of function appropriately it is more important to find out where
the development got off track and mush less important to know when it should have developed. We simply
understand where it went wrong and complete that function and move on.

The goal is to find and fix the problem in the development of the child. This heart-set is critical when dealing with
developmental disorders, delays and injuries in either the child or adult. With this model of neurodevelopment you
can identify the completed and the incomplete milestones to discover where the first developmental aberration in
any function occurred. Identifying the lowest level of dysfunction is the first step to fixing all developmental shortfalls
and disorders.  

Not included in this chapter on the model of neurodevelopment is accelerated function. The section of
neurodevelopment we are concerning ourselves with is the one that is sandwiched between prenatal and
accelerated/advanced function. In other words, we are covering from birth to completed “normal” development

i i
Prenatal>>>>child development>>>>advanced development
h h

Some of the other avenues of neurodevelopment not specifically outlined here are; global academic, emotional
development, social development, smell, taste, gnostic, intuitive and instinctive functions.

Visual development

Vision is a receptive (input in) function of the brain. Its main counterpart in expressive function correlates to mobility.
Mobility functions have a greater impact and influence on visual development than the other functions. Vision
development is not limited to affecting and being affected by mobility but also carries an impact in manual,
language, academic and emotional development. Globally, visual function also affects social, instinctive and even
smell and taste development and perception.
The muscles, nerves and brain parts connected to the eyes have more than one billion delicate parts which must
work together to provide clear vision. The visual system takes up less than 2% of the body by weight, yet it
consumes 25% of the nutrients the body takes in.
Although the physical eyes and neuropathways begin developing in early fetal development, visual development
does not take off until light and environmental objects to view become available at birth. Present at birth, there will be
basic reflexes like pupil response, flinch reflex and some faint outline perception of images but no real cognitive
sight developed.

Visual development starts out slower than the other receptive functions of hearing and tactile development simply
because there is very little stimulation for the eyes in the womb. Because of a lack of light for image contrast, lack of
depth in the environment and the lack of changing landscape, this limits the opportunities for neuropathways to
develop until after the infant is born and introduced to environmental light along with changing scenery and
environmental images.

Pupil reflex at birth

In neurodevelopment, the pupil reflex is an automatic brain/eye response to light that every newborn should have.
Pupil reflex is also influenced by hormones like adrenalin, emotional responses, cranial nerve development and
environmental toxins. The most sensitive muscles in the human body are in the eye. Toxic environmental burdens in
the body can show up by affecting these muscles and causing an irregularly shaped pupil. Adrenal dysfunction can
cause either a slower-than-normal or an unsustainable pupil response.

Even before birth, the pupil response to light develops in the brain and eyes at about 27 weeks of gestation As the
baby is developing in the womb, the eyes have little opportunity to develop as there is limited light, depth and
changing shapes available to stimulate them. Once outside of the womb the newborn’s eyes now receive adequate
light and newfound opportunity to develop sight.

The pupils constrict or dilate in response to light. When the brain receives signals from the nerves in the eye that tell
how much light is entering the eye, the brain then produces the pupil reflex when it sends a parasympathetic
response signal to the pupil's sphincter muscles in the eye. These sphincter muscles are the ones that constrict and
dilate the pupil’s opening.

A constant biofeedback to the brain regulates the amount of light that enters the eye by constricting or dilating the
pupil of the eye.

Any delayed or abnormal pupil response to light affects the subsequent levels in eye development of outline detail
perception, central detail vision and beyond. Additionally it will affect speech development, motor control and
reading. This occurs because the eye/brain connection does not regulate the light input for the accurate reception
and interpretation of images falling on the nerves in retina of the eye. This causes dulled images, inattentiveness to
detail, visual sensory integration issues and light sensitivities.

Adrenalin produced in the sympathetic flight or fight situation, will dilate the pupil to give a wider field of vision and
heighten sensitivity to peripheral movements and dangers. In the case of prevarication, or the telling of lies, the
pupils will normally constrict. After habitual prevaricating the pathological responses to lies eventually retrain both
pupil response and other body language responses to not react at all but to remain constant as if the truth was being

A difference in the size of the pupils from one eye to the other, called Anisocoria, can indicate one or more of
several things that can be wrong. Things like injured cranial nerves, inappropriate development of lower levels of
lateral brain/eye development, brain insult or brain injury, toxic chemical insult, potassium deficiency, and even
parasites. If either of the pupils is not perfectly round but have jagged edges or are misshaped, this is a good
indicator of a toxic liver burden.

Outline perception, reflective smile.

The next stage of eye development after pupil reflex is outline perception and reflective smile. Outline perception is
the ability to see definitions of contrast starting at birth with more extreme contrast of light and dark developing to
that of black and white and finally to the detail perception of discerning the subtle contrasts in similar colors, which
completes the stage of outline detail perception.

While the baby is nursing, the outline perception develops as the baby begins to discover the mother’s face. At first
the mother’s face is only a vague silhouette but quickly becomes shades of contrasts giving basic shapes to the
face. The baby can smell, taste, feel and hear the mother up to now and starts to integrate these senses with the
eyes to recognize the mother visually. This development occurs in first one eye then the opposite eye as the baby is
rotated from one breast to the other.

For instance: When the nursing child is suckling on the breast, one eye is occluded by the breast and the other eye,
closer to mommy’s face, is being stimulated with input. Soon the baby is recognizing the mother’s outline and facial
features. So, if the baby is on the left breast, the right eye is closest to mommy and receives the majority of the
stimulation. When the baby is rotated to the other breast, the eyes alternate and now the left eye is the one receiving

The brain first develops outline detail perception laterally (one side and then the other) and at about 16” or roughly
the distance between the babies face and the mother’s face while nursing. This distance is an optimal distance
throughout the life of the child for the visual input of symbols and words and for reading. 16” is the optimal distance
for introducing images for visual memorization of vocabulary words and also for some visual therapies.

The eyes do not coordinate very well at this stage of outline detail perception as the brain is developing laterally and
the brain will not coordinate the eyes together completely until the next stage of eye development. It is critical to note
at this point that babies that are bottle fed and only held in one arm of the parent and not rotated from side to side do
not develop brain organization appropriately. This will cause one eye to be much stronger than the other eye and can
cause mild to severe brain disorganization and Strabismus.

The mirror neurons in the cerebral cortex are also developing at this point of outline detail. When you smile, the baby
smiles, when you frown they frown, This developmental stage of reflective smile is the foundation for emotional
responses, mimicking language, reaching for items, basic survival skills and a host of other adaptive activities that
develop rapidly in the infant. Reflective neurons are critical for early survival of animals in the wild.

Mirror neurons are highly reactive to heavy metals like aluminum and mercury which happens to be adjuvants in
childhood vaccines. A sensitive child will regress neurologically with each vaccine it receives. Sometimes the effect
of heavy metals on the developing brain can be permanent and sometimes the effects fade in a few weeks or
months. Spacing out the vaccines and waiting for further brain maturation can be wise choices. For some children,
any vaccine at all can be neurologically devastating.

Central Detail Vision

Hands play

Central detail vision or macular vision occurs in the macula of the eye. In anatomy, this is the small yellowish area of
the retina near the optic disk that provides central vision. When the gaze is fixed on any object, the center of the
macula, the center of the lens, and the object being viewed are in a straight line. In the center of the macula is a
depression, called the fovea. The fovea contains specialized nerve cells that are known as cones. Cones are
associated with color vision and perception of fine detail.  

Because the macula is the fine detail vision center of the eye this is where the brain eventually learns to interpret
symbols into meaning. At later stages of development this is where reading occurs best and math is processed
best. Reading and symbol recognition is visual memorization of images taken into the eye, recognized, analyzed
and stored in the brain.

To experience the central detail vision and its importance let’s consider the temporary flash blindness associated to
photography flash. The macula can be over-stimulated with too much light causing the brain to “tune it down” This
occurs in the case of flash-blindness. We all have experienced temporary flash blindness with the flash of the
camera in our eyes. This causes the “blue dot” in our vision for a few minutes because the brain reacts to the flash
by tuning down the macula thereby leaving the ‘blue dot”.

In the case of “red eye” in a photograph, the macula of the eyes reflects the flash of light from the camera back to the
camera film causing what is known as “red eye” in the photo. The newest cameras have a pre-flash built in to over-
stimulate the macula of the eye before the flash that takes the picture thus reducing red eye in the ensuing

Children who have under-developed macular vision live life with the “blue dots” (actually gray or fuzzy) in the center of
the vision all the time. This child will not look you in the eyes, sit really close to the television screen, and will read
while holding a book at a very odd angle. It’s like taking a pair of opera glasses and painting over the lenses.
Everything in front of becomes unrecognizable and you have to rely on the peripheral vision to navigate and read.

If there is a challenge in central detail vision the brain will have difficulty recognizing and memorizing symbols and
words. The child may even skip whole lines while reading and invent words that it cannot see clearly using adaptive
function to compensate for the lack of detail vision. This child will also be hyper-peripheral and distracted by motions
in the periphery of the vision often bringing with it a diagnosis of “distractible”.

Central detail vision is the stage where the eyes first begin to really work together bilaterally. The brain begins to
recognize the information as the same in both eyes and basic tracking begins to occur. Depth perception moves
forward here as the visual horizons open up to the baby’s developing mobility and playing with its hands while the
eyes begin to triangulate objects.

Simultaneously at this stage of eye development the baby is rolling over, scooting around and viewing objects and
movements in the horizon. If the baby is not accomplishing these mobility milestones it will affect the visual
development. As depth perception opens up the baby will begin to reach out and find objects. The primary grasp
develops here also in manual function as the baby discovers depth and reach.

Depth perception and basic eye tracking

Distance and depth perception happen by way of accommodation from the pupil’s ciliary muscles which change the
position of the lens of the eye to focus on the desired object. These muscles are closely aligned with and affected by
the sphincter muscles of the eye that regulates light input to the nerves of the eye. Problems in pupil reflex can cause
problems in depth perception simply because of the proximity of these two muscles.

Depth perception is a matter of triangulation. To visually determine distance accurately, the eyes are the required
two fixed positions viewing and reporting a common third position whether it is mobile or stationary. It takes both
eyes fixed and focused on the same object for appropriate depth perception. Depth perception is especially critical
when tracing objects coming straight at the body.

At this stage of depth perception and basic eye tracking development, the baby is learning where its body is in
relation to objects and movements around it. The baby is beginning to see clearly enough and with depth perception
enough to start picking up objects with its pincer grasp rather than the whole handed primary grasp.

Depth perception and eye tracking are critical for later acquired reading skills. Not only do the eyes need to focus
clearly on the symbols for accurate interpretation but they need to track smoothly as the child reads. Mobility
development of belly scooting and crawling army style help the eyes to focus on the horizontal level and begin to
track both stationary and moving objects.  Smooth pursuit eye movements allow the eyes to closely follow a moving
object. It is one of two ways that visual animals can voluntarily shift gaze, the other being saccadic eye movements.
Pursuit differs from the vestibulo-ocular reflex, which only occurs during movements of the head and serves to
stabilize gaze on a stationary object. Most people are unable to initiate pursuit without a moving visual signal. The
pursuit of targets moving with velocities of greater than 30°/s tend to require catch-up saccades. Smooth pursuit is
asymmetric: most humans and primates tend to be better at horizontal than vertical smooth pursuit, as defined by
their ability to pursue smoothly without making catch-up saccades. Most humans are also better at downward than
upward pursuit. Pursuit is modified by ongoing visual feedback.

Eye dominance emerges, recognizing environmental symbols and coordinated eye tracking

Note: a majority of the baby’s horizontal tracking develops during previous stage and vertical tracking completes
development at this stage of eye development in perfect timing with mobility hands and knee crawling. This occurs
as the child sees the hands moving in the vertical line of the peripheral vision.

At this level of eye development the child will be in the early stages of emerging brain hemisphere dominance and
hand dominance for manual function. The predisposed right handed child should be beginning to prefer the right eye
as dominant and the predisposed left handed child should prefer the left eye. Very important: Never influence the
emerging hand dominance in a child but rather let the child choose naturally.

Recognition of environmental symbols will be emerging. A high chair, for example becomes the recognized place for
feeding. A baby food jar equates to food and the child will physically jump, make noises and salivate in anticipation
of the food when objects of feeding are presented. A day care sign or even the infamous “golden arches” of
MacDonald’s Restaurant will now be recognized as places of interest.

Photos of specific people will strike the interest of the child and pictures or drawings of animals on flashcards will be
recognized when the child is instructed as to the name of the person or animal. Even before the child can speak 200
words they will be able to pick out pictures when asked to find a certain animal or person among several flashcards.

Eye tracking becomes smooth and the eyes coordinate together until a tracked object reaches about an inch and a
half from the bridge of the nose. A ball rolled from several feet away and at a moderate pace toward the child can be
tracked with the eyes and effectively captured by the child’s hands. When reaching for objects the child will start to
prefer picking up smaller objects or food items with the dominant hand. As the child becomes more proficient with
the depth and reach coordination they will do so more and more with the pincer grasp (thumb and forefinger) instead
of with the primary grasp (whole hand or both hands).

Entire words can now also be recognized in visual memorization by flashing the word on a flashcard. These words
are not recognized phonetically or as alphabetic combinations but rather as a whole picture. For instance: Because
reading is visual memorization the word “elephant” becomes one piece of information as word. It does not take
phonetic skills to interpret the word “elephant” once the word is stored in memory. When you show the child the word
“elephant” and they learn the sound of the word associated with it, from then on the brain automatically tells them
what that word means.

Symbol recognition and basic reading skills

Once little eyes see and recognize the letter “A” and the catalogs it in the appropriate brain center, then the brain
remembers it every time it sees the letter “A”. Recognition of numerals is the same thing. Show the eyes what the
numeral is and tell the ears what sound goes with the numeral and the child remembers it. This is called visual

Chains of information form as blocks of information i.e. the alphabet sequence of A-Z and numerical order of 1-10.

The same principle of visual memorization in the previous level of Environmental The concept of simple alphabet
combinations to make up words begins to form as the brain develops more complex abilities.

At this point the word recognition capacity of the child to learn new words is limited only by the amount of input given
to the child. The child gains a growing capacity to memorize thousands of words as they are visually made available.

Basic reading skills depend on a large data base of words forming in the child’s memory. Once memorized the
words to the child’s favorite book can be recognized one at a time and appropriately understood and spoken by the
child. A new book can be introduced and “read” word by word if the child has previously seen the words on a
flashcard and memorized them.

Complex reading skills

Unlike visual memorization of words, complex reading skills includes phonetic skills. Phonetic interpretations and
enunciations of visually seen symbols making a word are a concept and dependent upon sequential processing
abilities. Until a child can visually process 6 sequences, that is; see a sequence of items, store them in the brain and
retrieve them in order, the child will have undue difficulty with phonetics.

We typically send the child to school to learn math and reading skills at the age of about 6 years old. This is the
neurodevelopmental age of 6 sequences where concepts form and are understood. 

In complex reading skills, alphabet letter combinations can be sounded out and word meaning extrapolated from the
context of the newly sounded out word.

Reading comprehension skills develop rapidly in this stage as the child begins to see pieces and whole blocks of
information as they relate to pieces and blocks. The child can absorb reading sequences, overall meaning, implied
meaning and relate them back verbally, with visual expression (i.e. acting out a story) in written form.

See also Eye Crossing and Eye Development for natural solutions to eye crossing and strabismus

Authored by Neurodevelopment Consultant Craig Stellpflug NDC, CNC
Healing Pathways Medical Clinic Scottsdale, AZ
Copyright 2009 Craig Stellpflug© Permission is hereby granted to copy and distribute this article but only in its entirety
<Back to Craig's Published Articles

Natural News Articles by Craig>

<Back to Home Page
How the child's eyes develop
Search this website